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OPTIBAL STABILrZATION OF MOTION WITH RESPECT TO SOME OF THE VARIABLES* 

V.I. VOROTNIKOV 

The use of non-linear transformations of variables and the theory of 
implicit functions yield sufficient conditions for the stabilization of 
the unperturbed motion of a certain class of non-linear control SyStentS. 

Upon stabilization one can achieve Lyapunov stability and asymptotic 
stability with respect to some of the variables. Closed formulae are 
obtained which make it possible to organize an iterative process which 
will determine the most satisfactory (optimal) stabilization law from 
the practical point of view. A technique is worked out by which the 
construction of control laws in the original non-linear system can be 
reduced to the construction of control 1aWS for an auxiliary linear 
control system of a simpler type. This technique is very similar to a 
principle that has become quite popular in the modern applied theory of 
automatic control - the iterative construction of optimal control laws. 
As an application, the technique is used to stabilize the equilibrium 
position of a rigid body by means of Cardan-suspended gyroscopes and 
motors in which the tractive force is continuously regulated. 

1. Statement of the problem. Suppose the perturbed motion of the object being controlled 
is described by a non-linear system of ordinary differential equations 

x' = X&x,u), x(t,O,o)=o, xe R", II= R' (1.1) 

whose right-hand sides are defined and continuous together with their partial derivatives 
with respect to t,x,u of up to second order inclusive in the domain 

t>o, IIxII<~HI Ilull< + 00 (1.2) 

The control vector will be sought in the class of vector-valued functions 
u (& 0) E 0 

u = u (t, x), 
which are continuously differentiable in the domain D: t 2 O,Ilx/l <If. In that 

case the right-band sides of the closed system (1.1) satisfy the conditions of the existence 
and uniqueness theorem for D. 

Our task is to choose the vector u =u(&x) in such a way /l-6/ that 1) the unperturbed 
motion x=0 of system (1.1) is stable with respect to all variables in Lyapunov's sense 
and asymptotically stable with respect to a certain specified subset of the variables character- 
izing it; and 2) a certain functional, characterizing the transient in the system and the out- 
put of the controls expended in the stabilization process, is minimized along the trajectories 
of system (1.11. 

If one is guided in the choice of the objective functional by the initial technical 
requirements only, the chances of finding a solution of the stabilization problem in a rigorous, 
closed form become severely limited. However, 
they still need correction, 

in the rare cases when such solutions are found, 
because many technical requirements are mutally contradictory and 

not always amenable to formalization. In applications, therefore, the most practical approach 
to the solution of optimal stabilization problems will involve an iterative procedure /3, 4/. 
In other words: one first (at the planning stage) makes a preliminary choice of the objective 
functional and then (still at the planning stage, 
corrects it iteratively - 

or perhaps already at the operational stage) 

of the functional itself. 
by readjusting coefficients or sometimes even modifying the structure 
The real-time implementation of such procedures requires that each 

individual step of the solution procedure be as simple as possible. 
The technique proposed below for solving optimal stabilization problems agrees on the 

whole with the approaches used in /l-6/, the only difference being that it reduces the con- 
struction of optimal control laws for the original non-linear system to an analogous con- 
struction for a simpler, auxiliary linear control system, 
a non-linear transformation of variables 17, 8/. 

derived from the original system by 

2. The class of systems 11.11 under consideration. We shall assume that the controls 
applied to the system are confined to one specific group of equations in system (1.1) and that 
Eqs.(l.l) hhve the form 
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w’ .z x’“’ (w, g, q), F’ == x(l) (w, :, 1,. II), II 

w, X(O) E R”‘; F;, x(1) r= R’; qx’L’ E R”-I,‘-‘: 

We shall assume that ,I. - n - 1> r and, in addition, 
related as follows: 

= x’“’ (5, 11) (2.1) 

x -= (w, g, 11) 

that the variables 5, n are 

Y (6, ‘1) = 0, T (0,O) = 0, YER”, k;~n-m--2r (2.2) 

where the components of the vector-valued function Y are continuously differentiable with 
respect to E,q in the domain (1.2). In the case 2r=;-n --m one can consider a system 
(2.1) in which the phase variables g, 11 are not necessarily related by the additional con- 
straints (2.2). 

3. Auxiliruql JacobCans. Consider the functions 

Q(w,g,q,u) = &Tglxy) + “~,xp, xi*) 

(i=l, J 
a=1 8 

. . .( n-m-l) 

(3.1) 

and introduce the Jacobian F(x,u) = (arPl/aUj) of the functions Qi (i = 1, . . ..n - m - I) with 
respect to the variables u,G = 1, . . ..r). Let rank F (0, 0)= P and assume that the first r 
rows of F (0, 0) are linearly independent (this assumption involves no loss of generality). 
Put rl = (p, p), PER', qeRn-+'-" and introduce the Jacobian Y((g, q) of the functions 
X1(*) (i = 1, . . ., r), Yj (j = 1, . . ., k) with respect to g, q. 

4. A~&lkq/ linear system. Consider the equalities 

q&(x, u) = n{* (i = 1 t ., n-m-l) (4.1) 

in which the functions 0'1 have the form (3.1). Since rank F(0, O)= T, it follows from the 
theory of implicit functions that in the neighbourhood of the point x = 0, u =0 for all 
Uih (here and below, unless otherwise specified, i = 1, . .., T), there exists a solution 

u=f(x,uA), f~R',u* =(u~,',...,u,") (4.2) 

of system (4.1) in which the vector-valued function f is continuously differentiable in the 
neighbourhood of x = 0 for all uiA, and moreover f(0, O)= 0. 

A direct calculation shows that q" = 4, (x. u), and since by assumption rank F(0, 0)= T-, 
there exists a neighbourhood of the point x = 0,~ = 0 in which,from the closed system (2.1), 
(4.2), we can isolate a system of linear equations 

Pi" zz UiA (4.3) 

5. An auxiliary optimal stabilization problem. Using dynamic programming methods /g/, 
one can show that if 

then the equilibrium 
stable in Lyapunov's 

position pi = pi' = 0 of each of subsystems (4.3) is asymptotically 
sense and a functional of the form 

m 
I< = 5 [a& + biPi2 + &"] dt 

a&h b,>Q, ci > 0 

is minimized on the trajectories of each subsystem. 
The constants a‘, bi, ci in (5.2) are not fixed, since, as will be shown below, 

optimum values are determined by an iterative procedure designed to find a solution 

(5.2) 

their 
of the 

original non-linear optimal stabilization problem which is acceptable from the practical point 
of view. 

6. The main result. Considering the right-hand side of the first group of equations in 
the closed system (2.1), (4.2), (5.1), let us isolate the terms that depend only on w, i.e., 
express the vector-valued function X(O) in the domain (Ix]] < H in the form 

X'O'(w,&q)= $(O)(w) + XF(w,5,n), X$'(w,O,O) =O (6.1) 
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Theorem 1 (stabilization of the unperturbed motion of system (2.1)). Assume that the 
following conditions hold: 

1. rank F (0, 0) = r; 2". rank Y (0, 0) = n - m - r_ 

Then, if the trivial solution w = 0 of the "truncated" system 

w'=,X(@((w) (6.2) 

is stable in Lyapunov's sense, the unperturbed solution x=0 of the closed system (2.1), 
(4.2), (5.1) is stable in Lyapunov's sense and asymptotically stable with respect to I, n. 
When that is the case the following functional is minimized along the trajectories of system 
(2.1), (4.2), (5.1): 

(6.3) 

Proof. By condition 2 and the theory of implicit functions, the equalities Xi(Z) = 0, 
Y, = 0 (j = 1, . . ., k) have solutions 

rI = ‘Pi (PY P’)t cpi (0, 0) = 0 (6.4) 
(i = m + 1, . . ., n; i#m+Z+l, . . . . m+Z+r) 

in a neighbourhood of the point g=O, q=O, where cpi are continuously differentiable with 
respect to p, p’. Eqs.(6.4) exhibit the relations between the variables occurring in the 
vectors 5, n and the variables p, p'. 

Under a non-linear transformation of variables which enables one to split off a linear 
system (4.3) from the original system (2.1), the closed system (2.1), (4.2), (5.1) becomes 

w' = X@)(w, 5,B), 5' = X(')(w, g,lI, f (W> ET.119 UA)) 

8' =Xc"'(ExTj)t pi" =Ui'r Uih = Ci’(d@i + d*+lP<‘) 

(6.5\ 

In view of (6.1) and (6.4), we conclude, expressing the variables &q in terms of p, p’, 
that in some neighbourhood of the point x = 0 system (6.5) splits off the following system 
of equations: 

w' = P'(w) + 525"'(w,p,p'), pi" = c;'(d<pi +- d,+,pi') (6.6) 

Since Eqs.(6.41 impose the conditions Cp< (O,O)= 0 on the functions ‘Pi, it follows that 
the variables occurring in the vectors g,n vanish if p = p' = 0. Thus the vector-valued 
function X*@) in system (6.6) satisfies the condition x*(o)(w, 0,0)~0. In addition, since 

the functions 'p, are continuously differentiable, the right-hand sides of system (6.6) satisfy 
the assumptions of the existence and uniqueness theorem for solutions. 

Noting that the trivial solution pi = pi’ = 0 of system (4.3), (5.1) is asymptotically 
stable in Lyapunov's sense (exponentially), while the trivial solution w = 0 of the "truncated" 
system (6.2) is stable in Lyapunov's sense, we conclude from the reduction principle /lo/ that 
trivial solution w = 0,~ = p'= 0 of system (6.6) is stable in Lyapunov's sense and asymp- 
totically stable with respect to the variables p, p'. 

The variables occuring in w are unaffected by the transformation of system (2.1), (4.2), 
(5.1) that isolates system (6.6). Therefore, the unperturbed solution x = 0 of system (2-l), 
(4.2), (5.1) is stable with respect to w. The variables z,,,+l+i of system (2.11, (4.2), (5.1) 
that occur in p are also unaffected by this transformation of system (2.1), (4.2), (5.1). It 
follows from these conclusions and from (6.4) that the unperturbed solution x = 0 of system 
(2.1), (4.2), (5.1) is asymptotically stable with respect to the variables g, n. 

Thus, the unperturbed motion x = 0 of the closed system (2.1), (4.2), (5.1) is stable 
in Lyapunov's sense and asymptotically stable with respect to the variables 

Since system (4.3), 
5, 9. 

(5.1) splits into r independent subsystems, we can state not only 
that the functionals Ii are minimized on its trajectories, but also that the same holds for 
their sum I. By equalities (4.1), Xi(Z) = pt', and the additivity of the integral, the func- 
tional I has the form of (6.3). System (4.3), (5.1) is obtained from (2-l), (4.2) and (5.1) 
by a non-linear transformation of variables and consequently the functional (6.3) is minimized 
along the trajectories of system (2.1), (4.2) and (5.1). This completes the proof of the 
theorem. 

Let us determine the domain of attraction of the unperturbed motion x = 0 of system 
(2-l), (4.21, (5.1). Assume that condition 1 holds in the domain 

II x II< H,, II u II < Hz (6.7) 

and condition 2 in the domain IIb*ll< H,, 6* = (E, q). Since u = f(x, uA (x)), inequalities 
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(6.7) determine a certain domain Ilxll< H,. To that end it is sufficient to single out in the 
domain Ilxll< H, all values of x which satisfy the inequality IIuII =I[f(x, uA (s))ll< H,. Put 
H* = min (Hz, H,,). 

C0r022ury. Let condition 1 of Theorem 1 hold in the domain (6.71 and condition 2 in the 
domain I]$,* I/ < Ha. Then S = (x,: I/ x (t; t,, x0)\/ .< fi*} is the domain of attraction of the 
unperturbed motion x = 0 with respect to the variables g,q, i.e., /[g* (t; t,,xU)~/+O, t-+ 0~ 
for x,E S. 

Remarks.1. Itisassumed in the corollary that for all x, u in the domain (6.7) the first 
r rows of the matrix F are linearly independent, and for all 6,~ in the domain ll%*ll<HHa 
the same rows of the matrix V are linearly independent in that domain. 

2. Thanks to the explicit form of the solutions g. rl of the closed system (2.11, 
(4.21, (5.1) no essential difficulties are involved in constructively determining the set S 
by the method proposed here. 

7. The Ckoice of optimal control tam. The auxiliary linear system (4.3) was derived 
from the original, non-linear system by a non-linear transformation of variables. It follows 
that the behaviour of the variables Pi* Pi t and consequently also that of the variables 
z,,,,: / i of the original system (2.11, (4.2), (5.11, is determined by system (4.3), (5.1), and 
the quality of the transient with respect to the variables Zzx+l+i in the non-linear system 
(2.1) may be controlled by varying the constants ai, bi, q in the functionals (5.21 while 
solving the auxiliary optimal stabilization problem for system (4.3). 

If condition 2 holds, then Eqs.t6.4) hold. As a result, by varying the values of the 
constants Q, b,, ci in (5.2) one can control the quality of the transient in the original 
system (2.1) not only with respect to the variables I,+~+~, but also with respect to the 
variables (6.4). When that is done the resources necessary to create the controls ui in 
system (2.11 may be estimated using (4.2) and (5.1). Since f(x, u"(x))=0 at I* = 0, while 
the unperturbed motion x = 0 of system (2-l), (4.2) and (5.1) is stable with respect to w, 
we conclude that by adjusting the coefficients ai, b,, q in f5.2) we can also regulate the 
control values ui. In sum: the constants al, bi,ci and the functional (6.31 may be chosen 
with a view to guaranteeing the desired quality of the transient in the non-linear starting 
system (2.1) with respect to the variables E,I), at a satisfactory cost in respect of the 
resources needed to create the controls ui. 

The easewith which each individual instance of the problem (corresponding to fixed values 
of ai, bi, ci) can be solved justifies resorting to an iterative procedure in order to approximate 
a practically acceptable solution of problem (4.21, (5.11, and moreover the details of this 
procedure are based on functions obtained in closed form. When that is done the functional 
(6.3) is a generalized performance index of the control in the original, non-linear problem 
of stabilizing the unperturbed solution x = 0 of problem (2.1). This is in agreement with 
the role played by performance indices in the modern applied theory of automatic control. 

8. Stabilization of the equilibrium position of a rigid body using a Cardan-suspemied 
ggr+oscope. Consider a free rigid body with principal central axes of inertia Os,+zS, on 
which a Cardan-suspended gyroscope is mounted in such a way that the axis of its external 
gimbal is directed along 02, and its fixed point coincides with the centre of mass of the 
body. The gyroscope is regulated by three motors, which generate torques about the axes of 
the external and internal gimbals and the axis of the rotor. 

The equations of motion of this mechanical system are /ll/: 

A,q,' = (4, - A,) ~&a + ~1 (1 2 3) (8.1) 

Bil’ = 4&z - S&3 (i = 1, 2, 3) (1 2 3) 

Aa’ = --(A, + A) p1 - (A, + A) qe sin a tg 8 + 
(A, + A) q9 cos a tg fi + K, + (Kp sin Q - K, cm a) tg p 

AP’ = -(.A2 + A) qa cos u - (A, + A) q3 sin a + 
K,cos a -+ K, sin a 

& = lZltArBrrr> A&' = 0 (i. k = 1, 2, 3) 
U1 = -ul*, rt, = -US* sin atg fl - u,* cosa + us* since set @ 

ua = ur* co9 a tg 8 - ue* sin a -us* cos ~sec p 

Here r&(i = 1, 2, 3) are the projections of the instantaneous angular velocity vector on the 
axes Oslz,szz,; Ai (i = 1,2, 3) are the moments of inertia of the body with respect to these axes, 
A and C are the equatorial and axial moments of inertia of the gyro, a and p are angles 
defining the position of the gyro relative to the body; pir are the direction cosines of the 
angles between the axes Oz,x~, and the axes of the inertial system 0X,X,X, and Ki and 
h, (i = 1, 2, 3) are the projections of the angular momentum vector of the system on the axes 
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WWS and 0X,X,X,, respectively. Eqs.(8.1) were derived on the assumption that cosfi#O, 
i.e., the external and internal gimbals lie in different planes. 

Eqs.(8.1) have the particular solution 

qi = 0, Pfk = 1 (i = k), fJik = 0 (i # k) 

K, = hi”, a = a,, p = fJO, v' = rO* (i, k = 1, 2, 3) 

(a,, PO, vO', hi" - const) 

(8.2) 

which corresponds to the equilibrium position of the body in the inertial coordinate system 

(Yd is the velocity of rotation of the gyro about itself). Taking PO =O, i.e., assuming 
that at the start of the motion the planes of the internal and external gimbals are at right 
angles to one another, let us consider the problem of stabilizing the specified equilibrium 
position of the body through controls ui* (i = 1, 2, 3) generated by the motors. To that end, 
introducing new variables qi’ = qi* filr’ = pik - 1 (i = k), @ik’ = fJfk (i # k) (i, k = 1, 2, 3), a' = a - aO, 

B' = B and returning to the original notation, we obtain the following equations of the 
perturbed motion: 

AA,' = (A, - A3) qzq3 + u1(1 2 3) 

Bii' = Gs~ i&' = -43 +G,z, 813' = 42 +G,, (L= 1, 2, 3) (1 2 3) 

Aa* = -_(A, + A)q, - (A, + A) lq, sin (a _t aO) - qs cos (a + 
aO)l tg P + k + z (&" + hk) fir, + [G, sin (a + a,) -G, cos (a + 

ao)l tg B 

(8.3) 

AB' = -(AZ + A) ~ZCOS (a + aO) - (A, + A)q, sin (a + a,) + 

G,cos (a + a,) + G,sin (a + a,) 

hi' = 0, Gil = 93Biz - 4afii3 (i = 1, 2, 3) (1 2 3) 

Gj = @+j + hl+j + 2 (h,' + hti) f~k.j+l (j = 1, 2) 
u1 = -ul*, u2 = -ul * sin (a + a,)tg fl - u2* cos (a -/- aO) + 

uI* sin (a + a,)sec p, uQ = ul* cos (a + a,) tg fi - 

US* sin (a + aO) - us* cos (a + a,)sec f& p*ijICij 

To these equations we add the six relations 

BiX 
+ flki + JQilplil = 0 (i, k = 1, 2, 3; i < k) 

implied by the relations between the direction cosines. Denote the expressions on the left 
of (8.4) by Y, (j = 1, . . ., 6). Defining also Xl(a) = &I, X2@) = 8,,, X,(z) = G,, and introducing 
the notation wI = a, w2 = fi, & = qi (i = 1, 2, 3), Q = pgl, qz = 823, 93 = 831 (m = 2, 1 = r = 3, k= 6, 
n = 14), one can verify that system. (8.3), (8.4) satisfies conditions 1 and 2 of Theorem 1. 

The control laws (4.2) in this case are 

(8.5) 

These controls laws are related to the controls ui*(i= 1,2,3) generated by the motors 
as follows: 

% * = -_u 17 % * = - Uz cos (a + 

ad- uQ sin (a + a,), ut* = -ul sin p $ 

[+sin (a + aO) - ~~~0s (a + aO)l ~0s i3 

The axuiliary linear system (4.3) consists of the equations fi21" = USA, pa;. = uznr &'* = 
US A and the "truncated" system (6.2) of the equations 

Aa' = h, + I@, + h,O) sin (a + aO) - (h, + hSO)cos (a + ao)l tg p (8.6) 

AB' = (h, + h,')cos (a + aO) + (h3 + h,")sin (a + a,) 
hi’ = 0 (i = I, 2, 3) 
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System (8.6) describes the motion of an uncontrolled gyro on an immobile base. In that case 
111, 121, if the initial perturbations of the angular momentum are small, the system will be 
stable will be stable for any finite (not necessarily large) angular velocity of rotation of 
the gyro in unperturbed motion. But if the initial perturbations of the angular momentum 
take arbitrary finite values, the stability condition will be observed only for sufficiently 
large values of yO'. 

Thus, by the theorem proved above, the unperturbed motion of system (8.3)-(8.5) is stable 
in Lyapunov's sense and asymptotically stable with respect to the variables qi, Bik (i, k = 1, 2, 3). 
Incidentically, this stability of the unperturbed motion of the system with respect to a, p 
justifies our starting assumption cos~#O, PO= 0. 

The control laws are small in mangitude if the initial perturbations of the angular 
momentum of the system are small. Optimal control laws can be chosen using the technique 
outlined in Sect.7. Eqs.(6.4) for our example are 

822 = --1 -f- 1/* - BZIZ - P23*' B32 = ~-l&P,, - P23 (1 f Ml/(1 ~-~ PA 

883 = I-1 i- BzzZ - P$&P31 + t/m& - t&l?) 

B,s = IV,/ikf*, 8x3 = MJM", &I = --1 _t 1/1 - &;z - f113'L 

M, = 2 (1 + BZZ) + (1 + Pj92Y - 8312 - 2 (1 -I- Pz2) f&l2 - 

(1 -t- i&a) P312 - PZl' - 2 (1 t- Pza) BZIZ - (1 -t P,,)" Pz1 - 

l&lVQ12 - 2 (1 + Bzz) flUVQ12 - (1 + Pa*) P213B312 

M* = 1/M,2 + Ma2 + M,%, M, = (1 Jr PzJ (1 i ha) - P&z 

q1 = (-823. + q2lW(~ i- P%J 

qa = I--L&z - (1 + th,) Bsl’1lM.a 

q3 = [-B&i, -1- IL (1 + P33)llJf* 

In the interests of clarity, we point out that the expressions for ~(i = 1, 2, 3) were 
obtained by solving the equations fizz' = 6,,, &_* = 6,,, flat‘ = G,, for qi, and those for I& by 
solving system (8.4). As a result one obtains the explicit form of the solutions of the 
closed system (8.3)-(8.51, so that, by giving suitable values to dZ.* &+I in Ui" (i = 1, 2, 3), 
one can select control laws from the set (8.5) which are optimum in the practical sense - and 
this may be done in real time. 

For a more detailed analysis of the objective functional (6.31, let us confine attention 
to the case CC,, = B. = 0, that is, the planes of the internal and external gimbals in equi- 
librium are perpendicular to one another, and the axes of the external and internal gimbals 
and the rotor point along the appropriate principal central axes of inertia of the body. We 
transform from the interconnected variables Pik to the three independent Krylov angles /13/, 
which uniquely define the position of the body: 'p (yaw), 4 (trim), f3 (tilt), letting the X, 
and xQ axes be the fundamental axes. Then 

B1* = -'p + . .., &a = 11‘ + . . ., pzl = cp -I- . . . . f&? = -0 + . . . 
@3x = -9 i_ . . ., ps2 = 6 + . . ., PZl’ = q8 + . . ., psi = --Qz + . . . 

& _: -.-qz -+ . . ., ul” = -+*lA, -+ . . ., u,” = u,*iA, + . . . 

ug’ = +‘/A, + . . . 

where the dots stand for terms of more than the first order in %- (P.~P.~,c%$,J.Q* (i = f,2,3). 
In view of these relations we conclude that the integrand P in the objective functional has 
the form 

P = a,$ + ap + a# + b,q,2 + b,q,2 t- b341Z + 

c,u~*~IA~” + cz~,*~/A,” -t c+z **/AZ2 + P* (9, cp, W, 0, a, i% u*) 

where the functionP*contains terms of order three and above in y,, 'p, 9, 8, CL, p, Ui* (i = 1, 2, 3). 
putting b, = A,, b, = .Aar b, = A,, we deduce that P is the sum of four expressions: 1) the 

kinetic energy of the body A,qle i- Aaqz2 + A,q,‘; 2) a quadratic form Q,@ + a,82 f aa\P" 
characterizing the departure of the body from its equilibrium position T=*=6=0;3la 
quadratic form c,u,*VAi2 + c~zL,*~/A,~ + c1u3 *‘!A3’ characterizing the resources expended in 
generating the controls; 4) a function P * = P* (q, CP,~,%,CZ, 8,u*), defined during the solution. 

Technicallyspeaking,thestabilisation laws thus obtained are implemented as follows. 
When the body departs from equilibrium, special devices measure q& Fir a, $ and send appropri- 
ate signals to the controlling motors, which respond by generating torques UC* (i=1,2, 3) and 
applying them to the axes of the Cardan suspension. As a result of the torques &* (i = 1, 2, 
3)‘ the body is restored to its original equilibrium position. 

9. Gem.eru~ization of the m&n resu’lt. We shall show that the possibilities of construct- 
ing the auxiliary linear system (4.3) may be extended if one considers, instead of (4.1), 
equalities 
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X+‘)(X, U)=Uj*(j=19 . . . . Z,(r) (9.1) 
Qi (X, U) = Ut+i(i = 1, . . ., n - m - I) (9.2) 

and instead of the conditions n-m-l> r, k> n - m - 2r one requires that n-m-l> 
r - I,, k > n - m - 2r f 1,. 

Let F*(x, u) be the Jacobian of the functions X,(')(j = 1, . . . . I,), @,(j = 1, . . ., n-m-l) 
with respect to the variables ui. Let rank F*(O, 0) = r and, without loss of generality, let 
us assume that the linearly independent rows in F* (0, 0) are the first r ones. Let y* (x) 
be the Jacobian of the functions X$z)(i = 1, . . . . r - II), Yi (i = 1, . . ., k) with respect to 

the variables &,+r, . . ., El, ~_l,+~, . . ., qn+-l. Since rank F* (0, 0) = r, it follows from the 
theory of implicit functions that in the neighbourhood of the point x = 0, u = 0, for all USA, 
there exits a solution 

u = f*(x,uA), Uh = (+A,.. .,&A) (9.3) 

of system (9.1), (9.2), where the vector-valued function f* is continuously differentiable 
in the neighbourhood of x= 0 for all uiA and f* (0,O) = 0. 

It can be shown by a direct calculation that there is a neighbourhood of the point x = 0, 
u=o in which the closed system (2.1), (9.3) splits off a system of linear equations 

It can be shown 

p-<=LQ (i=1, . ..( Z,(r) (9.4) 

p[y+j = Uc+j (j = 1, . . ., r - L1) (9.5) 

by dynamic programming methods that if 

uih = --I/ai*ici*pi (i = 1, . ., I,) (9.6) 

position pi = 0 (i = 1, . .., I,) of each of the subsystems (9.4) is asymp- then the equilibrium 
totically stable in Lyapunov's sense and a functional of the form 

Ii* = S[Q*pc + Ci*u:z]dt 
1. 

is minimized on the trajectories of each subsystem. 

Theorem 2. Assume that the following conditions hold: 

1". rank F* (0, 0) = r; 2”. rank Y* (0) = n - m - r 

Let the trivial solution w=o of the "truncated" system (6.2) be stable in Lyapunov's 
sense. Then the unperturbed solution x = 0 of the closed system (2.1), (9.3), (5.1), (9.6) 
(Eqs.tS.1) hold for i = 1, + 1, . . . . r) is stable in Lyapunov's sense and asmyptotically stable 
with respect to g,q. The functional 

I* = i { >gl [Ui*&+i +Ci*(Xl” (Xy II))“] + (9.7) 

+ bj (XP’(Fy 3)” + cj@j’ (x, u)]} dt 

is minimized on the trajectories of this system. 
Using the technique developed in Sect.7, the constants a), b,, CJ (j = 1, . . . . r-k), ai*, 

ci* (i = 1, . . .( I,) in (9.7) can be selected so as to achieve the desired quality of the tran- 
sient in system (2.1),(9.3),(5.1),(9.6)with respect to the variables&r),at a satisfactory cost 
in the resources needed to generate the controls u:. 

Remarks. I. In the case m = 0 (when system (2.1) consists of the equations 5'=XuJ(&n, 
u) tl' = Xo) (5, rl)) (I if conditions 1 and 2 are satisfied, the unperturbed solution of systems 
(2:1), (4.2), (5.1) and (2-l), (9.3), (5.1), (9.6) are asymptotically stable in Lyapunov's 
sense, by Theorems 1 and 2, respectively. 

2. As in Sect.7, there is a constructive procedure to determine the domain of attraction 
of the unperturbed motion x=0 with respect to the variables E-a. 

3. Theorems 1 and 2 extend the results of /I, %/ to.a broader range of non-linear systems. 

Exumple. Consider Euler's dynamic equations 

A,%' = (A, - -4,) 4249 + u1 (1 2 3) (9.8) 

which describe the rotational motion of a rigid body about its centre of inertia 0. Here 9, 
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are the projections of the angular velocity vector of the body on its principal central axes . . 
of inertia O.r,~,r:,. A, are the principal central moments of inertia and ,i, are the controlling 
torques, i -~ 1, 2, 3. 

Let s be a unit vector, with projections s,(! =-= 2.2.3) on the axes 0z1x2z3, representing 
a specific orientation in inertial space; then 

sl' w3 - w2 (1 2 3) (9.9) 

Eqs.(9.8) and (9.9) have a particular solution 

'i, :- u, = 0 (i :-- 1, 2, 3), s1 --= s1 = 0, SI =- 1 (!&lo) 

corresponding to the equilibrium position of the body when there are no controlling torques, 
on the assumption that one of the principal central axes of inertia of the body (the x2 axis) 
points along the vector s. 

Consider the problem of stabilizing the equilibrium position (9.10) by controls ut (i =- 
1,2,3). To that end, introducing new variables ql' =- 9, (i = i, 2. 3).s,' = s) (i = 1, 3), 8,' = sp - 1 and 
returning to the original notation, we construct the system of equations of the perturbed 
motion: 

A,q,' = (A, -A,) 4199 -I- u1 (1 2 3) (X11) 

sl' = (sp -+ 1) q3 - s3qz 6% ‘PI, 2 s,’ r= ssqi - s,q3 = pz 
,\ %’ = s14, - (Se + 11 41 = K?> s12 + (s2 $m i)2 + s,* = 1 

Setting 5, = q&, q,'.= S, (i = 1, 2, 3), m =: 0, Y, = ~2 + (sp + I)% + s3* - 1, we can verify that the 
structure of system (9.11) is just that of the second and third group of Eqs.tl.1). However, 
condition 1 of Theorem 1 fails to hold. At the same time, setting 

ki = iJi (I = 1. 2, 3), q1 = S1, Q =- sg, Q == sp 

‘4,X,(') = (A, - A,) 5,5,, x,(2) = (rlz + 1) Ea - %&% x,(Z) = q&2 - (% + 1) j, 

we conclude that conditions 1 and 2 of Theorem 2 hold for system (9.11). 
The control laws (9.3) in this case are 

Ai wf, + SjQ) 
ui =: ‘4% ($2 -t 1) ’ /=1,3; uz=Az(u~*-$2) (9.12) 

and the auxiliary system (9.4), (9.5) consists of the equations q2’ = ulA,sl” = usA, ~1” = 11~~. 
Making the appropriate choice of ulA(i= 1,2,3), we conclude that the unperturbed motion of 
system (g-11), (9.12) is asymptotically stable in Lyapunov's sense. 

We note that these control laws may solve, for example, applied problems such of stabil- 
izing the orientation of a spacecraft in interplanetary flight by brief orientation sessions 
/14/, a problem which in many cases reduces to the above problem of stabilizing the equilibrium 
position of a rigid body in inertia space. Various other problems of controlling the angular 
motion of rigid bodies (such as the reorientation and stabilization on an orbit) are analysed 
using the technique proposed here in /15, 16/. 
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In order to study controlled motion of objects in the atmosphere, which 
travel under the influence of aerodynamic drag and gravity, a model 
problem is used to investigate the mechanism by which these forces 
affect the intensity of braking of the object in an exponential 
atmosphere. A time-optimal control is synthesized for objects whose 
aerodynamic drag may be characterizedexclusivelyas a force proportional 
to the product of the velocity of motion times the density of the 
atmosphere at the current altitude of motion, on the assumption that'the 
atmosphere is exponential. The control synthesis, represented in 
generalized coordinates V,p, is independent of the braking character- 
istic T of the object and the parameter k characterizing the variation 
of atmospheric density; it is determined solely by the magnitude of the 
generalized terminal stopping velocity vk and the values of Pmin/mar 1 
which are determined by the position of the boundaries of the phase 
constraint (PC). It is shown by a numerical experiment how one can 
simplify the optimal synthesis by introducing a certain control 
"significance" level. 

1. Statement of the problem. In connection with the control of motion in an exponential 
atmosphere (i.e. /l/, the density of the atmosphere varies exponentially with altitude Hz r = 
ro exp (---kH)), in a plane-parallel gravitational field, we shall consider the mechanism by 
which aerodynamic drag and the force of gravity affect the braking of an object. The model 
problem studied below may be given the following physical interpretation. 

In an inertial coordinate system (see Fig.1, in which XOZ is the plane of the local 
horizon and the Taxis points along the gravitational lines of force), an object P (the 
pursuer) moving at velocity V,, is approaching an object Z (the pursued object) which is 
moving at a velocity V,. Initially, the object P receives a starting impulse which imparts 
to it an initial velocity V,,. As it continues to move, its mass remains constant, but the 
direction of its velocity V, is modified by its control system, which ensures that the 
projections of V, and V, on a plane perpendicular to the line joining P and Z (called the 
range line, CPZ) remain equal to all times. The magnitude of V, decreases under the action 
of aerodynamic drag, whose magnitude mav be considered nrovortional to the vroduct r,,V,, 


